Automated Simultaneous Multiple Feature Classification of MTI Data
نویسندگان
چکیده
Los Alamos National Laboratory has developed and demonstrated a highly capable system, GENIE, for the twoclass problem of detecting a single feature against a background of non-feature. In addition to the two-class case, however, a commonly encountered remote sensing task is the segmentation of multispectral image data into a larger number of distinct feature classes or land cover types. To this end we have extended our existing system to allow the simultaneous classification of multiple features/classes from multispectral data. The technique builds on previous work and its core continues to utilize a hybrid evolutionary-algorithm-based system capable of searching for image processing pipelines optimized for specific image feature extraction tasks. We describe the improvements made to the GENIE software to allow multiple-feature classification and describe the application of this system to the automatic simultaneous classification of multiple features from MTI image data. We show the application of the multiple-feature classification technique to the problem of classifying lava flows on Mauna Loa volcano, Hawaii, using MTI image data and compare the classification results with standard supervised multiple-feature classification techniques.
منابع مشابه
3D Scene and Object Classification Based on Information Complexity of Depth Data
In this paper the problem of 3D scene and object classification from depth data is addressed. In contrast to high-dimensional feature-based representation, the depth data is described in a low dimensional space. In order to remedy the curse of dimensionality problem, the depth data is described by a sparse model over a learned dictionary. Exploiting the algorithmic information theory, a new def...
متن کاملA novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems
Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...
متن کاملAdaptive Beamforming for SAR Ambiguity Rejection
The Lincoln SPARTA program is developing next-generation phased arrays for enhanced radar performance and efficiency. One novel capability being explored is simultaneous operation of MTI (moving target indicator) and SAR (synthetic aperture radar) imaging, two functions that are usually mutually exclusive. MTI scans large areas quickly, using short integration (~10 msec) and low bandwidth (~10 ...
متن کاملMultispectral rock-type separation and classification∗
This paper explores the possibility of separating and classifying remotely-sensed multispectral data from rocks and minerals onto seven geological rock-type groups. These groups are extracted from the general categories of metamorphic, igneous and sedimentary rocks. The study is performed under ideal conditions for which the data is generated according to laboratory hyperspectral data for the m...
متن کاملIdentification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor
Abstract Over the last two decades, improvements in developing computational tools made significant contributions to the classification of biological specimens` images to their correspondence species. These days, identification of biological species is much easier for taxonomist and even non-taxonomists due to the development of automated computer techniques and systems. In this study, we d...
متن کامل